Multi-Clustering Centers Approach to Enhancing the Performance of SOM Clustering Ability

نویسندگان

  • Ching-Hwang Wang
  • Chih-Han Kao
چکیده

This paper modified the mechanism of weight adjusting of the Self-Organizing Mapping network (SOM) for solving the problems of topology preserving and clarifying boundary of clustering graph for the clustering analysis. The modified SOM is named the Multiple Clustering Centers SOM (MCC-SOM). The MCC-SOM changed the competitive learning mechanism of “winner takes all” to allow the more one clustering centers that can cause the graph of neighboring clusters with blurring boundary to focus on each of the cluster centers, and highlight the boundary of each cluster. The mechanism also can automatically set the units of topology without appropriate setting, and promote the topology preserving of graph by the consistency between the standard of weight adjustment and the case. Through the case studies, it is evident that the MCC-SOM can modify the performance of the SOM model. Thus, by using the MCC-SOM, the analysts can use the output topology to produce more precise result of classification of cases, and enhance the correct percent of the afterward predicting or classifying models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Clustering Methods for Predicting Permeability in a Heterogeneous Carbonate Reservoir

Permeability, the ability of rocks to flow hydrocarbons, is directly determined from core. Due to high cost associated with coring, many techniques have been suggested to predict permeability from the easy-to-obtain and frequent properties of reservoirs such as log derived porosity. This study was carried out to put clustering methods (dynamic clustering (DC), ascending hierarchical clustering ...

متن کامل

A Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm

Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...

متن کامل

Multi-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms

Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...

متن کامل

Electrofacies clustering and a hybrid intelligent based method for porosity and permeability prediction in the South Pars Gas Field, Persian Gulf

This paper proposes a two-step approach for characterizing the reservoir properties of the world’s largest non-associated gas reservoir. This approach integrates geological and petrophysical data and compares them with the field performance analysis to achieve a practical electrofacies clustering. Porosity and permeability prediction is done on the basis of linear functions, succeeding the elec...

متن کامل

Evaluating Different Approaches to Permeability Prediction in a Carbonate Reservoir

Permeability can be directly measured using cores taken from the reservoir in the laboratory. Due to high cost associated with coring, cores are available in a limited number of wells in a field. Many empirical models, statistical methods, and intelligent techniques were suggested to predict permeability in un-cored wells from easy-to-obtain and frequent data such as wireline logs. The main obj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Inf. Sci. Eng.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2009